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Photoacoustic imaging (PAI) is a noninvasive emerging imaging method based on the
photoacoustic e®ect, which provides necessary assistance for medical diagnosis. It has the
characteristics of large imaging depth and high contrast. However, limited by the equipment cost
and reconstruction time requirements, the existing PAI systems distributed with annular array
transducers are di±cult to take into account both the image quality and the imaging speed. In
this paper, a triple-path feature transform network (TFT-Net) for ring-array photoacoustic
tomography is proposed to enhance the imaging quality from limited-view and sparse measure-
ment data. Speci¯cally, the network combines the raw photoacoustic pressure signals and con-
ventional linear reconstruction images as input data, and takes the photoacoustic physical model
as a prior information to guide the reconstruction process. In addition, to enhance the ability of
extracting signal features, the residual block and squeeze and excitation block are introduced into
the TFT-Net. For further e±cient reconstruction, the ¯nal output of photoacoustic signals uses
`¯lter-then-upsample' operation with a pixel-shu®le multiplexer and a max out module.
Experiment results on simulated and in-vivo data demonstrate that the constructed TFT-Net
can restore the target boundary clearly, reduce background noise, and realize fast and
high-quality photoacoustic image reconstruction of limited view with sparse sampling.

Keywords: Deep learning; feature transformation; image reconstruction; limited-view
measurement; photoacoustic tomography.

1. Introduction

The ring-array photoacoustic tomography (PAT)
system is often used to image the whole body of
small animals or human organs and tissues. As a
noninvasive biomedical imaging method, photo-
acoustic imaging (PAI) can reveal the optical

absorption properties of biological tissue, and com-

bined with molecular probes, the functional prop-

erties of tissue can be obtained, which can be used

for medical diagnosis and treatment assistance.1,2

For PAT, the fully sampled photoacoustic signals

involve large amount of data which will lead to a

This is an Open Access article. It is distributed under the terms of the Creative Commons Attribution 4.0 (CC-BY) License. Further
distribution of this work is permitted, provided the original work is properly cited.

OPEN ACCESS
Journal of Innovative Optical Health Sciences
Vol. 17, No. 3 (2024) 2350028 (18 pages)
#.c The Author(s)
DOI: 10.1142/S1793545823500281

2350028-1

https://orcid.org/0000-0001-6050-5914
https://orcid.org/0009-0006-3169-2929
https://orcid.org/0000-0001-7580-7288
https://orcid.org/0000-0001-8719-524X
https://dx.doi.org/10.1142/S1793545823500281


sharp increase in the cost of the acquisition device

and the image reconstruction time.3 Therefore,

some annular array systems reduce the cost and

improve the reconstruction speed by reducing the

number of transducer elements and controlling the

sampling angle of view. However, in this setting, it

is di±cult to meet the requirements of full sampling,

which reduces the quality of the reconstructed

image. As shown in Fig. 1, when the sampling angle

of view is 180� and the number of transducer ele-

ments is reduced by 50%, the image reconstruction

quality is greatly reduced. Finding a fast and high-

quality photoacoustic image reconstruction algo-

rithm to improve the quality of reconstructed ima-

ges for under-sampled data with limited-view is of

great signi¯cance for promoting the clinical trans-

formation and application of PAT technology.
Conventional PAT reconstruction algorithms,

e.g., ¯ltered back-projection (FBP) and time re-
versal (TR) are widely used in photoacoustic image
reconstruction. However, these reconstruction algo-
rithms will result in distorted images with many
artifacts in limited-view con¯guration.4 Recently, the
development of deep learning (DL) algorithm pro-
vides a new research perspective for the enhance-
ment of PAT image quality, which is divided into
image denoising based on low-quality reconstructed
images, reconstruction process compensation based
on traditional reconstruction algorithms, and direct
image reconstruction.5 Lan et al. established a gen-
erative adversarial network-based approach,
Ki-GAN, which, in addition to time-series data, uses
traditional delayed-sum reconstructed photoacoustic
images as additional information to regularize neural
network, the method is applied to a system distrib-
uted in a ring array.6,7Min et al. proposed amethod to
enrich time series data using a lookup table-based

image transformation before reconstructing the image
using U-Net.8 Lu et al. proposed a hybrid data-driven
deep learningmethod LV-GANbased on a generative
adversarial network to recover high-quality images
from sampled signals of a ring-array photoacoustic
system with a limited-view angle. Experiments show
that LV-GAN can achieve high recovery accuracy
even with a limited detection angle of less than 60�.9

Also recently, some studies implemented °exible
unsupervised DL strategies for photoacoustic image
reconstruction. Lu et al. designed a PA-GAN based
on CycleGAN to improve the limited-view image
quality in PAT.10 Li et al. proposed a SEED-Net to
generate data-label pairs through unsupervised
`simulation-to-experiment' data translation and
presented a QOAT-Net to estimate absorption
coe±cients.11

Although the above-mentioned DL algorithms
have achieved advanced research results, the re-
construction process focuses on the post-processing
of low-quality images obtained from traditional re-
construction. These reconstructions are highly de-
pendent on traditional reconstruction methods. In
the case of incomplete signals, the reconstruction
results will also degrade due to the poor recon-
struction quality of traditional methods. Waibel
et al. used a modi¯ed U-Net architecture to esti-
mate the initial pressure distribution directly from
time-series pressure data, the ¯rst attempt to di-
rectly reconstruct images using the convolutional
neural network (CNN).12 Lan et al. developed a
hybrid processing framework Y-Net to complete
reconstruction by optimizing raw data and beam-
forming images, the network connects two encoders
through a decoding path, which is more e±cient
than traditional algorithms.13 The texture structure
and high-dimensional features of the original signal
are encoded, and the feasibility and robustness of

(a) (b) (c) (d) (e)

Fig. 1. Reconstruction images corresponding to the change in sampling angle and the number of transducer elements.
(a) The ground truth. (b) and (c) represents reconstructed images of 128 and 64 detector elements with full-ring coverage,
respectively. (d) and (e) represents reconstructed images of 128 and 64 detector elements with 180� limited-view coverage,
respectively.
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the method are veri¯ed by in vitro experiments.
Tong et al. ¯rst attempted to take the physical
model as the prior information of the network
structure, designed a feature projection network
FPnet connecting the signal domain and the image
domain, and used U-Net as the subsequent image
processing network.14 Therefore, in the process of
directly reconstructing the raw photoacoustic sig-
nal, the reconstruction performance can be further
improved by adding the prior information of the
physical model and the texture information of the
low-quality images.

In this paper, we present the study on a multi-
input parallel processing DL model triple-path fea-
ture transform network (TFT-Net), which is used to
realize signal-to-image conversion and image-to-
image feature extraction. TFT-Net combines the
raw photoacoustic pressure signals and traditional
linear reconstruction images as input, and takes the
photoacoustic physical model (i.e., ¯rst-order par-
tial derivative of signal to time) as a prior infor-
mation to guide the reconstruction process. The
residual block and squeeze and excitation block are
introduced into TFT-Net to enhance the ability of
extracting the limited-view signal features. For
further e±cient reconstruction, the ¯nal output of
photoacoustic signals uses `¯lter-then-upsample'
operation with a pixel-shu®le multiplexer and a
nonlinear max out module to quickly choose the
maximum pixel value of all the channels. To verify
the performance of the network, experiments on
simulated data and in-vivo data were implemented.

2. Materials and Methods

2.1. Photoacoustic tomography

PAT uses a ¯xed-frequency short-pulsed laser to
irradiate the biological tissue in the imaging area.15

Instantaneous thermoelastic expansion of the tissue
induces a rise in pressure, generating ultrasonic
signals that propagate to the surface of the tissue.16

The signal is collected by the ultrasonic transducer
around the imaging area. The acquisition card rea-
lizes the setting of the acquisition frequency,
ampli¯es the sound pressure signal generated by the
tissue, and obtains a photoacoustic image that can
re°ect the structural characteristics after analysis
by the reconstruction algorithm.

The photoacoustic signal collected by the ultra-
sonic transducer is related to the change in tissue

temperature. The photoacoustic signal in the time
and spatial domain pðr; tÞ satis¯es the following
equation:

r2 � 1

v2
s

@ 2

@t2

� �
pðr; tÞ ¼ � �

kv2
s

@ 2T ðr; tÞ
@t2

; ð1Þ

where vs represents the speed of the ultrasonic
wave, usually 1540m/s in the experiment; � is the
thermal expansion coe±cient; k is the isothermal
compressibility coe±cient, which is related to the
inherent properties of the heated tissue.

For laser pulses that satisfy thermal and stress
constraints, the thermodynamic equation can be
expressed as follows:

Hðr; tÞ ¼ �CV

@T ðr; tÞ
@t

: ð2Þ

Hðr; tÞ represents the thermal energy absorbed by
the organization per unit time, which is a®ected by
the equal volume speci¯c heat capacity CV and
density � of biological tissue. Thus, by combining
Eqs. (1) and (2), the photoacoustic wave equation
expressing the photoacoustic propagation process
can be obtained, as shown in the following equation:

@ 2pðr; tÞ
@t2

� v2
sr2pðr; tÞ ¼ �HðrÞ @�ðtÞ

@t
; ð3Þ

where � is the Grüneisen coe±cient, which repre-
sents the e±ciency of tissue light energy to sound
wave conversion. Then, the main idea of PAT re-
construction is to recover an accurate initial
acoustic pressure distribution HðrÞ from the detec-
ted raw photoacoustic signals.

2.2. PAT image reconstruction

At present, mature conventional photoacoustic
image reconstruction algorithms are mainly divided
into analytical reconstruction algorithm and itera-
tive reconstruction algorithm.

Analytical reconstruction is the older approach
to reconstruction, and consequently, has seen more
development in PAI. Reconstruction is accom-
plished by deriving the analytical expression for
photoacoustic images from the physical equation.
Typical analytic reconstruction algorithms include
delay-and-sum (DAS), FBP.17–19 In the most com-
mon universal back-projection algorithm, HðrÞ
is determined by the weighted summation of the
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back-projection term bðdi; tÞ and the coe±cient !i.

HðrÞ ¼
XN
i¼1

b di; t ¼
jr� dij

vs

� �
!i; ð4Þ

where i represents the index of the ultrasonic
transducer element, ! is related to the centroid
angle and position of the ultrasonic transducer,
bðdi; tÞ is determined by the sound pressure signal
and its derivative at the corresponding position and
time, as shown in Eq. (5). Analytical reconstruction
has high computational e±ciency and fast imaging
speed, but is highly data-dependent and prone to
reconstruction artifacts.

bðdi; tÞ ¼ 2pðdi; tÞ � 2t
@pðdi; tÞ

@t
: ð5Þ

The iterative reconstruction algorithm is a kind of
relatively °exible and variable reconstruction algo-
rithm. The iterative algorithm is used to solve
Eq. (3), which is written in matrix form:

Ax ¼ y; ð6Þ
where x is the initial sound pressure distribution, A
is the system matrix, and y is the measured photo-
acoustic signal. The objective of iterative recon-
struction is to minimize the relationship between
the measured signal y and the theoretical signal x
predicted by the forward photoacoustic model, as
shown in the following equation:

argmin
x

1

2
jjAx� yjj22 þ �RðxÞ; ð7Þ

where 1
2 jjAx� yjj22 represents the data item, the

regularization factor RðxÞ corresponds to the image
prior, and � is the weight of regularization.

Common iterative reconstruction algorithms in-
clude compressed sensing,20,21 TR,22,23 the alter-
nating direction multiplier method,24 etc. which are
computationally expensive due to forward opera-
tion of each iteration.

Additionally, the data-driven arti¯cial neural
network, also known as deep learning,25 has been
developed to solve the inverse problem for imaging.
DL is good at discovering complex patterns from
massive amounts of data to determine the best
model parameters to minimize the cost function.
Generally, DL-based approaches follow the con-
ventional reconstruction scheme mentioned above
and can also be divided into iterative and non-
iterative reconstruction.

The DL-based iterative reconstruction scheme,
that is, model-based learning, usually unrolls out
the iterative process and simulates the process of
multiple iterations through a series of network
modules.26 Establishing a model-based DL method
and incorporating the physical forward model into
the network can make full use of the theoretical
basis of images, which has been studied in Refs. 27
and 28. However, due to the limitation of repeated
simulation of the physical model, these improvements
in reconstruction quality are usually time-consuming.

Noniterative reconstruction schemes, such as
post-process reconstruction, using conventional
reconstruction algorithms to obtain low-quality
images, and then constructing a CNN to remove
artifacts and noise, have been widely studied.29–31

Compared with the deep learning-enhanced recon-
struction method, the direct DL reconstruction does
not depend on the image generated by the conven-
tional reconstruction method and is easier to train.
However, the data-driven DL direct reconstruction
method does not include the physical model, and
the quality of the reconstructed image is lower than
other methods.12 Then, some related research
works13,14 have attempted to introduce physical
model prior information into the network to
improve the reconstruction quality of signal-to-
image domain transformation, and achieved good
reconstruction results. However, Y-Net13 is applied
to image reconstruction of linear array transducers,
and FPnetþUnet14 has enhanced image quality
based on signal domain transformation with slow
reconstruction speed and numerous model
parameters.

2.3. Triple-path feature transform
network

In this paper, we integrate the post-processing
image quality enhancement reconstruction method
with the signal image domain reconstruction using
prior information from physical models, and con-
struct a TFT-Net to achieve parallel processing of
multi-features while fusing rich prior information,
as shown in Fig. 2. According to Eqs. (4) and (5),
the raw photoacoustic signal pðdi; tÞ and the
¯rst-order partial derivative of the signal to time
@pðdi;tÞ

@t have an important in°uence on the initial
pressure reconstruction.14 At the same time, taking
the images obtained by the traditional
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reconstruction algorithm as the auxiliary input of
network can provide additional texture information
for the reconstruction results in addition to the
sound pressure signal. TFT-Net realizes the hybrid
processing of the raw sound pressure signal, the ¯rst
derivative of the photoacoustic signal and the ana-
lytical reconstruction images. On the one hand,
CNN is employed to extract and fuse the features of
the original sound pressure signal and its ¯rst-de-
rivative information, which is similar to the process
of universal back projection (UBP) signal mapping
pixels, so as to realize the feature transformation to
photoacoustic images. On the other hand, CNN is

used as a post-processing network, as shown in
Fig. 2 using a typical encoder–decoder structure
U-Net32,33 to enhance the low-quality reconstructed
images obtained by traditional reconstruction
algorithms. Finally, the resulting feature maps are
accumulated by summation to obtain quali¯ed re-
construction images.

In order to enhance the network's ability to extract
signal features, TFT-Net introduces typical feature
extraction and transformation modules,34,35 e.g.,
residual block (Resblock), squeeze and excitation
block (SEblock) in Fig. 3. Based on the Resblock
architecture, SEblock uses global average pooling,

(a) (b)

Fig. 3. Illustration of the feature extraction and transformation modules: (a) Resblock and (b) SEblock.

Fig. 2. Architecture of the proposed TFT-Net. Path 1, Path 2, and Path 3 are used to extract multiple features representing the
raw photoacoustic signal, the ¯rst derivative of the photoacoustic signal and the traditional reconstruction images, respectively.
Paths 1 and 2 present the output dimensions of each component in C�H�W. And the number in path 3 represents the number of
¯lters.

Triple-path feature transform network
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fully connected layer and objective function to
redistribute the weight for each channel of the input
features. Simultaneously, to increase the universal-
ity of the network and adapt to diverse input signal
dimensions, a resample module of bilinear interpo-
lation is adopted to adjust the processed dimension
of (H, W) to a ¯xed (64, 512), where H represents
the number of array elements and W is the signal
length. For e±cient reconstruction, the ¯nal output
of path 1 and path 2 uses `¯lter-then-upsample'
operation with a pixel-shu®le multiplexer and a
max out module, i.e., eSR-MAX,36 instead of a fully
connected layer. The learning parameters of the
¯ltered convolution layer enable SEblock to explic-
itly model the weight relationship of each channel
feature map in the training process, and ¯nally
achieve the goal of emphasizing important features
and suppressing noise.

In addition, according to the di®erence between
the characteristics represented by the input data
and the location of the context, two normalization
methods are used in the network, i.e., batch nor-
malization (BN) and instance normalization (IN).
Although the calculation methods of BN and IN are
similar, each calculation of BN is oriented to the
normalization of small batch samples, while IN
normalizes a dimension of di®erent channels of the
feature map. Compared with BN, IN pays more
attention to the independent features of each
channel, which is often used in image stylization.37

Therefore, in signal-to-image reconstruction, IN is
used for feature extraction of photoacoustic pres-
sure signal, combined with anisotropic convolution,
which can preserve the independence of information
collected by each transducer.

2.4. Implementation

2.4.1. Performance measures

The classic loss function mean square error (MSE) is
used in the reconstructed model to measure the
di®erence between the network prediction output
and the label image in pixels, which is de¯ned as
follows:

MSE ¼ 1

n

Xn
i¼1

ðyi � ŷiÞ2; ð8Þ

where n represents the number of pixels in the
image, and the label image is consistent with the
network output in size. yi is the pixel value of label

image, ŷi is the pixel value of the network output
image. The square processing of MSE makes the loss
function sensitive to abnormal outliers, and its easy
derivation makes it easier for the network model to
approach the optimal solution.38 In the training of
the compared CycleGAN, the learned mapping
function contains adversarial loss, cycle-consistency
loss and identity loss, which is consistent with the
original model.39

In order to quantitatively evaluate the perfor-
mance of the network, mean absolute error (MAE),
peak-signal-to-noise ratio (PSNR), and structural
similarity index (SSIM)40 are introduced as the
evaluation metrics for image quality.

2.4.2. Implementation details

In network training, the batch size was set to 4. The
model training epoch depends on the speci¯c task
and was usually set to 200. The neural network
parameters were optimized using Adam optimizer
with an initial learning rate of 1e-4 which is multi-
plied by 0.5 every 30 epochs. The photoacoustic
signal data and traditional reconstructed low-qual-
ity input images are normalized to [0, 1].
The ground truth and ¯nal output of the model are
128� 128 images. Based on the DL framework
PyTorch,41 the experiments are trained and veri¯ed
on NVIDIA GTX1080Ti GPU with 11GB memory.

3. Results

In order to validate the performance of the con-
structed reconstruction model, numerical simula-
tion and in-vivo experiments were conducted. The
reconstruction results of the proposed TFT-Net are
compared with the widely used conventional re-
construction algorithm TR23 and post-processing
DL-based U-Net,33 hybrid processing Y-Net,13 do-
main transformation FPnet,14 and unsupervised
CycleGAN,39 which are analyzed qualitatively and
quantitatively on the simulation data set and the
in-vivo data set, respectively. In experiments, the
compared network models were adaptively adjusted
based on the input dimension. In simulation and
public in-vivo data, we vary the comparison model
according to the input two path signal with di-
mension of (64, 1024), e.g., adjusting the last down-
sample layer Conv20� 3 of Y-Net to Conv8� 3
and changing the stride of the convolutional layer
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connected to the fully connected layer in FPnet
from (1, 1) to (2, 1).

3.1. Simulated data

The MATLAB toolbox k-Wave23 is used to
generate the training data. As a supplement to the
realistic dataset, the simulation dataset expands the
data scale and increases the diversity of data.
In simulation, we employed full-view 360� trans-
ducer ring-array with a radius of 55mm, containing
128 detection elements. The center frequency of the
transducer is set as 5.5MHz with 80% bandwidth,
and the speed of sound is set to 1540m/s. Consid-
ering the need of di®erent types of data for network
generalization, four datasets with di®erent struc-
tural characteristics are used to evaluate the per-
formance of TFT-Net and other DL-based methods.
For visual display, Fig. 4 shows example of images
used in the four reconstructed datasets. The vessel
dataset selected 1000 intricate and irregularly
shaped cerebral angiography images to validate the
convergence speed and stability of the model. The
structure of abdomen medical images is relatively
complex, and the distribution of tissue light ab-
sorption coe±cient is diverse. Then based on the
published 8270 abdomen MRI images data,14 the
model reconstruction performance is further veri-
¯ed. The brain dataset consists of public MRI
images which can be acquired from the website
of The Cancer Imaging Archive (TCIA).42 Then,
1927 human brain MRI images were used for

comprehensive comparison of reconstruction per-
formance and human brain PAT transfer learning.
Based on the optimal pre-trained model of human
brain MRI, 10 human brain PAT images from the
public photoacoustic ring-array tomography data
set43 were used for transfer learning of a few samples
to validate the robustness of the proposed
TFT-Net.

Due to the limited availability of the sample size,
the human brain PAT images are divided into
training set and testing set. Other datasets are
randomly divided into train set, validation set, and
test set according to the ratio of 70%, 10%, and
20%. Table 1 brie°y describes each data set and lists
the number of training, validation, and test sam-
ples. The training set is used for network training,
the test set is used for model test, and the veri¯ca-
tion set is used to verify the training process and
save the best model parameters. Further, based on
the test set, three evaluation metrics are used to
analyze the reconstruction performance. In the nu-
merical simulation, we properly tested the recon-
struction performance and robustness of the
proposed TFT-Net.

3.1.1. Model-¯tting evaluation

The ¯tting degree and reconstruction performance of
the proposed TFT-Net was ¯rst evaluated based on a
small sample vessel dataset. Table 2 lists the recon-
struction performance of TFT-Net and baseline
methods in terms of the evaluation metrics, with the

Fig. 4. Image examples for the four reconstructed datasets.

Table 1. Description of each simulated dataset.

Dataset Description Train set Validation set Test set

Vessel Cerebral angiography images 700 100 200
Abdomen Human abdomen MRI images 5789 827 1654
Brain Human brain MRI images 1927 275 552

Human brain PAT images 6 / 4

Triple-path feature transform network

2350028-7



optimal values presented in bold. We can see that
compared with the baseline method, TFT-Net with
rich prior information fusion gains remarkable per-
formance, with PSNR of 23.98 dB and SSIM of 0.84.

The loss and PSNR variation curves in the
training based on U-Net and TFT-Net frameworks
are shown in Fig. 5. It can be seen that there is no
over¯tting phenomenon, although the vessel train-
ing samples are insu±cient. Due to the fusion of
multiple features in TFT-Net to learn the recon-
struction process, the convergence curve of the
validation dataset based on TFT-Net is smoother
and more stable compared to the baseline model
U-Net.

In addition, we visually analyze the reconstruc-
tion performance on the test dataset, as shown in
Fig. 6. The TR reconstructed result shows lower
image quality and more artifacts. Based on the low-
quality reconstructed image, post-processing U-Net
can e®ectively reduce artifacts and enhance image
quality. The TFT-Net model with multiple prior
information fusion proposed on the baseline meth-
ods can reconstruct more accurate and clear vas-
cular structures.

3.1.2. Reconstruction performance on
abdomen MRI

The reconstruction performance was further com-
pared and veri¯ed on the su±cient abdomen MRI

dataset with relatively complex structures. The
proposed TFT-Net is compared with multiple ad-
vanced DL-based photoacoustic image reconstruc-
tion algorithms, including U-Net, Y-Net, FPNet,
and the unsupervised CycleGAN. The quantitative
evaluation of the computed abdomen MRI test
dataset is shown in Table 3. TFT-Net shows opti-
mal reconstruction performance, achieving 30.70 dB
(PSNR) and 0.89 (SSIM).

The visual e®ect comparison of di®erent algo-
rithms in the test set of abdomen MRI images is
shown in Fig. 7. It can be seen that partial struc-
tural information can be restored by using post-
processing U-Net or hybrid processing Y-Net.
However, due to the relatively smooth ¯ltering
process, the obtained reconstructed image is blurry.
FPNet using the measured raw data and its ¯rst
derivative information as input, can reconstruct
clearer image details. The unsupervised CycleGAN
can improve image quality to some extent, but the
generated reconstructed images contain signi¯cant
background noise. The reconstruction performance
of TFT-Net not only further improves the image
details, but also greatly reduces the image with
background noise and improves the analyzability of
the reconstructed image.

3.1.3. Reconstruction performance on human
brain images

Human brain MRI dataset with distinguishing fea-
tures from abdomen structures was used to validate
the reconstruction results of our method and the
compared methods. In the reconstruction of human
brain images with complicated structures, TFT-Net
has also achieved excellent performance compared
to other methods, as shown in Table 4, with PSNR
of 25.71 dB and SSIM of 0.77. Parameters and

Table 2. Quantitative evaluation of proposed TFT-Net
for vessel.

Method PSNR (dB) MAE (�10�3) SSIM

TR 19.7829 51.7811 0.3532
U-Net 23.0042 22.1096 0.8384
TFT-Net 23.9837 16.1817 0.8440

Fig. 5. Loss and PSNR evaluation metric change curves in the vessel dataset.
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computation amount are also calculated to measure
the computational complexity and consumption of
the model. As seen from Table 4, the quantity of
parameters of TFT-Net is about 1.44MB, achieving
a better balance between image reconstruction
performance and model complexity. And the °oat-
ing-point operations (FLOPs) of TFT-Net is

100.78GB, making it possible to realize high-quality
reconstruction without intensive computation
compared to other models e.g., CycleGAN and
FPnet. As displayed in Table 4, the e®ectiveness of
SEblock and eSR-MAX module is further veri¯ed.
The SEblock following the last Resblock has a small
improvement of 0.29 dB and 0.01 in PSNR and
SSIM, respectively. In the eSR-MAX test experi-
ment, a fully connected layer was used to replace
the pixel-shu®le multiplexer and a max out module
behind Con1� 3 layer. The experimental results
show that the parameter number of TFT-Net
without eSR-MAX reaches 269.87MB, which is
nearly 188 times of the original model. In addition
to signi¯cantly reducing model complexity,
eSR-MAX also performs well in reconstruction
performance, increasing PSNR by 1.87 dB and
SSIM by 0.18.

Fig. 6. Comparison of reconstruction performance based on di®erent algorithms in vessel dataset.

Table 3. Quantitative evaluation comparison of di®erent
models for abdomen MRI.

Method PSNR (dB) MAE (�10�3) SSIM

U-Net 27.2310 23.8514 0.7692
Y-Net 26.2941 29.8859 0.5666
FPNet 25.7315 32.8905 0.6547
CycleGAN 22.5035 71.4363 0.4452
TFT-Net 30.6961 15.6603 0.8931

Ground Truth U-net Y-Net

CycleGANFPnet TFT-net

Fig. 7. Comparison of visual e®ect based on di®erent algorithms in abdomen MRI.
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In addition to numerical results, the visual re-
construction results of di®erent algorithms in brain
MRI test images are shown in Fig. 8. To clearly
compare the reconstruction e®ects of each model,
the MSE (�10�3) value between the recovered
image and the ground truth is calculated. It can be
intuitively seen that the supervised deep learning
reconstruction methods can e®ectively eliminate

background noise in low-quality images recon-
structed by TR, but exhibit blurry and unclear
details in image feature areas. CycleGAN with un-
supervised style transfer enhances some details e.g.,
edges and textures, but shows unsatisfactory in re-
moving background noise. The TFT-Net without
SEblock module and the TFT-Net without eSR-
MAX module both exhibit better reconstruction

Table 4. Quantitative evaluation comparison of di®erent models for brain MRI.

Method Parameters (MB) FLOPs (GB) PSNR (dB) MAE (�10�3) SSIM

TR / / 15.5450 133.2564 0.4107
U-Net 0.9268 8.9286 22.8232 46.8272 0.6121
Y-Net 9.7593 22.8088 21.5640 55.6264 0.5177
FPNet 270.4076 300.9707 20.6364 62.4445 0.4567
CycleGAN 28.2956 118.0622 20.6310 77.9809 0.5544
TFT-Net w/o eSR-MAX 269.8719 101.8587 23.8336 43.5352 0.5885
TFT-Net w/o SEblock 1.4363 100.7839 25.4133 33.2374 0.7587
TFT-Net 1.4364 100.7849 25.7069 32.3262 0.7708

Fig. 8. Reconstruction results of di®erent models for the human brain test images. Grayscale images represent the ground truth
and corresponding generated images by each method. Viridis-color images represent the squared error maps between the recovered
image and ground truth.
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performance than other DL-based models. At the
same time, the reconstruction result of the TFT-Net
without SEblock module is superior to those with-
out eSR-MAX module, indicating that the eSR-
MAX plays a more important role in improving the
performance of the TFT-Net. TFT-Net outperforms
other methods in reconstructing detail textures,
resulting in clearer and more hierarchical images
which are closer to the ground truth.

The proposed method was further experimen-
tally validated on the public photoacoustic ring-
array tomography dataset of human brain. Because
of insu±cient training samples for human brain
PAT, we used pre-trained weights from human
brain MRI simulation data as the network initial
parameters. After transfer learning, the pre-pro-
cessed PAT data was employed to optimize the
constructed reconstruction models. In the photo-
acoustic test set, the quantitative reconstruction
performance comparison of each model after 10
epochs of ¯ne-tuning is shown in Table 5. It can be
seen that in the transfer training with only a small
number of samples, i.e., six human brain PAT
images, only TFT-Net based on TR reconstructed

low-quality images can e®ectively extract image
feature information and improve performance
metrics, demonstrating impressive model perfor-
mance stability.

Figure 9 shows an example of visualization
comparison results between the TFT-Net model
and other methods. In human brain PAT, we can
see that the reconstructed image obtained by TR
has under-sampling artifacts, obvious background
noise and blurred boundary of the imaging target.
Although deep learning methods e.g., U-Net and
CycleGAN have not shown performance improve-
ments in terms of quantitative metrics, their sub-
jective quality was relatively enhanced compared to
low-quality images reconstructed by TR. The re-
construction of TFT-Net e®ectively eliminates the
interference of background noise with a better vi-
sual e®ect. Although there are some di®erences in
the intensity information of the target compared
with the ground-truth, the reconstruction result is
in line with the expectation and can clearly re°ect
the contour boundary of the target.

3.2. In-vivo data

After fully verifying the excellent reconstruction
results in simulated data experiments, the proposed
model is further applied to more complex and
practical in-vivo data. Firstly, performance com-
parisons are conducted using mice's brain in-vivo
data from public dataset MSOT-Brain.14 According
to the reconstruction settings, a transducer con-
taining 64 channels' elements with a 180� view were
used to rebuild the ground-truth image. Further-
more, we applied the model to ¯nger cross-sectional

Table 5. Quantitative evaluation comparison for
human brain PAT.

Method PSNR (dB) MAE (�10�3) SSIM

TR 14.9620 154.7668 0.5093
U-Net 12.9931 141.7165 0.3858
Y-Net 12.2102 145.2734 0.3957
FPNet 13.2545 141.7443 0.3972
CycleGAN 8.2101 192.7942 0.3915
TFT-Net 18.1050 77.4122 0.6063

Fig. 9. Comparison of reconstruction performance for the human brain test sample. Row 1 represents the ground truth and
corresponding generated images by each method. Row 2 represents the squared error maps between the recovered image and
ground truth.
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images obtained from self-constructed PAT sys-
tems. The description of each photoacoustic dataset
is shown in Table 6. Due to the limited sample size,
the in-vivo images are divided into training set and
testing set.

3.2.1. Reconstruction performance on mouse

brain PAT

We implemented our experiment on public mouse
brain in-vivo data to test the validity of TFT-Net.
As shown in Table 7, TFT-Net still achieved opti-
mal results in PSNR, SSIM, and MAE evaluation
metrics, which is consistent with its performance on

simulated data. Based on TR reconstruction results,
TFT-Net increased PSNR by 17.78 dB and reduced
MAE by 88.07%. In terms of reconstruction speed,
TFT-Net using sound pressure signal and tradi-
tional reconstructed image as input, takes approx-
imately 6.86 s to complete automatic reconstruction
of testing images, which is about 4.35 s longer than
the baseline U-Net. But compared with other pop-
ular reconstruction models e.g., Y-Net and Cycle-
GAN, the time di®erence is within 1–2 s, and even
exceeding FPNet.

Figure 10 shows the imaging performance of
di®erent algorithms in mouse brain PAT test ima-
ges. It can be seen that based on TR low-quality
images with poor visibility of structures, TFT-Net
can accurately reconstruct more image details with
clear texture edges, which is closest to the ground-
truth, as shown by the red arrow. Although
CycleGAN exhibits strong feature generation ca-
pabilities, some texture information of the image
generated by CycleGAN is inconsistent with the
ground truth, as shown by the yellow arrow. In
terms of visualization and objective indicators, the
reconstruction results of TFT-Net in the in-vivo
data of ring-array PAT meet expectations, achiev-
ing high-quality reconstruction of photoacoustic
images while considering imaging time. Further-
more, we tested the reconstruction performance of
TFT-Net on di®erent spatial sampling sparsity
using mouse brain PAT images. The raw sensor
data were detected by 8, 16, 32, and 64 elements
with 180� angular coverage, respectively. As shown
in the last row of Fig. 10, TFT-Net can e®ectively

Table 6. Description of each in-vivo dataset.

Dataset Description Train set Test set

Brain Mouse brain PAT images 695 61
Finger Human ¯nger images

in PAT system
800 200

Table 7. Quantitative evaluation comparison for mouse
brain PAT.

Method PSNR (dB) MAE (�10�3) SSIM Time (s)

TR 14.6909 152.0110 0.5927 /
U-Net 28.1431 31.1618 0.8207 2.5151
Y-Net 22.5791 67.3953 0.7624 4.8379
FPNet 23.6841 60.3207 0.7234 7.4335
CycleGAN 25.4436 44.6794 0.7843 5.8443
TFT-Net 32.4731 18.1349 0.8703 6.8645

Fig. 10. Comparison of imaging performance of the mouse brain PAT. Row 1 represents the ground truth and corresponding
generated images by contrastive DL-based methods. Row 2 represents the traditional reconstructed images and TFT-Net recon-
structed images based on di®erent sparse sampling data.
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recover the missing information and improve the
quality of PAT images su®ering sparse sampling.

Moreover, from the comparison of quantitative
metrics before and after TFT-Net reconstruction in
Fig. 11, it can be seen that TFT-Net shows stable
reconstruction performance for images with di®er-
ent levels of sampling sparsity, and can still show
excellent performance in the reconstruction of low
number (8) of ultrasound sensors, with a di®erence
of only 3.57 dB in PSNR and 0.09 in SSIM com-
pared to 64-channel reconstruction images.

3.2.2. Validating on PAT system

To further evaluate the reconstruction performance
of TFT-Net, we used a full-ring tomographic scan-
ner consisting of two semicircular ultrasound
transducer arrays for ¯nger imaging. The distribu-
tion of the two semi-circular ultrasound transducer
arrays is shown in Fig. 12(a), each with 128 ele-
ments for ultrasound detection evenly distributed in

the imaging area with a radius of 55mm. The PA
ring-array imaging system adopts multi-path an-
nular illumination to realize full angle illumination
of the imaging area, as shown in Fig. 12(b). The
optical ¯ber is used to transmit the laser, the beam
is collimated by the lens, and the tomography ir-
radiation is formed in the imaging area after the
light is transmitted through the water tank wall.
The central frequency of the transducer is 5.5MHz,
and the signal acquisition frequency is set to
25.51MHz. At the same time, 532 nm wavelength
laser is used to excite the signal of the imaging
target, and the laser repetition rate is set to 20Hz.
As shown in Fig. 12(c), the imaging target is sam-
pled using the ring-array PA system, which is
evenly covered by the illumination area. The pho-
toacoustic signal generated by absorbing laser
energy is ¯nally received by the transducer.

In systematic experiments, the semi-ring128-
channel signal is employed as the subsampled signal,
and the original 256-channel signal is employed

12.6766 12.8708
13.7417 14.6909

28.9043
29.6277

31.4102
32.4731

0.4238
0.4547

0.5255

0.5927

0.7842
0.8079

0.8527 0.8703

Fig. 11. The quantitative evaluation metric change curves of TR and TFT-Net with 8, 16, 32, and 64 elements. The left and right
charts represent the PSNR and SSIM, respectively.

(a) (b) (c)

Fig. 12. System experimental equipment: (a) Probe distribution and view setting, (b) Ring-array photoacoustic system, and
(c) Circular lighting diagram.
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as the fully sampled signal. Based on the e®ective
length, the data is intercepted to obtain the dual path
signal with dimension of (128, 1600) as input.
The low-quality reconstructed images of 128� 128
were obtained by traditional reconstruction
algorithm DAS.44

A quantitative analysis of test samples from the
realistic test set is displayed in Table 8. Due to
the mismatch between the signal dimension and the
FPNet and Y-Net models, we mainly compared
the performance with the post-processing models,
i.e., U-Net and CycleGAN. At the same time, con-
sidering the strong feature generation capability of
GANs, we introduced the supervised learning-based
Wasserstein generative adversarial network with
gradient penalty (WGAN-GP)45 in sparse and 180�
limited-view PAT acquisitions, which has been
successfully used in removing limited-view and
limited-bandwidth artifacts in PAT images.46 In the
model construction, the U-Net framework shown in
Fig. 2 is used as the generator, and a discriminator
is the same structure as Ref. 46.

In the system experiment, the evaluation metrics
of DAS reconstruction results is acceptable when
employing the 128 sensors with 180� view, and the

Table 8. Quantitative evaluation metrics comparison for
¯nger PAT.

Method PSNR (dB) MAE (�10�3) SSIM

DAS 26.5690 29.3944 0.5443
U-Net 28.6303 21.7006 0.7658
CycleGAN 28.2305 29.4088 0.7069
WGAN-GP 31.3003 16.0932 0.8331
TFT-Net w/o path3 24.4316 31.8167 0.5950
TFT-Net w/o path2 31.2913 16.5161 0.8365
TFT-Net w/o path1 31.5761 15.8830 0.8399
TFT-Net 31.6961 14.8912 0.8418

Fig. 13. Comparison of reconstruction performance for the ¯nger PAT test sample. Hot-color images represent the ground truth
and corresponding generated images by each method. Viridis-color images represent the squared error maps between the recovered
images and ground truth, where the values represent the MSE (�10�3) between the restored image and ground truth.
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PSNR reaches 26.57 dB. On this basis, U-Net in-
creased PSNR by 2.06 dB and SSIM by 0.22.
Compared to U-Net, unsupervised reconstruction
method CycleGAN showed a smaller performance
increase, with PSNR by 1.66 dB and SSIM by 0.16.
WGAN-GP improves the PSNR by 2.67 dB and
3.07 dB, and SSIM by 0.07 and 0.13 compared to
U-Net and CycleGAN, demonstrating good recon-
struction performance. The evaluation metrics of
TFT-Net are slightly higher than WGAN-GP. It
still shows excellent evaluation metrics in the ¯nger
imaging of the PAT system, achieving PSNR of
31.70 dB and SSIM of 0.84, which are 3.07 dB and
0.08 higher than the baseline U-Net, respectively.

The contributions of di®erent paths in TFT-Net
are compared in Table 8. It can be seen that TFT-
Net without path 1 shows a slightly better perfor-
mance than TFT-Net without path 2, both of which
are signi¯cantly superior to other comparison
models, e.g., U-Net and CycleGAN. The perfor-
mance of TFT-Net without path 1 is slightly infe-
rior to TFT-Net. However, TFT-Net without path
3 has unsatisfactory evaluation metrics, with PSNR
of 24.43 dB and SSIM of 0.60, even lower than
U-Net, demonstrating that path 3 in TFT-Net plays
a more important role in high-quality image
reconstruction.

Finger cross sections PAT examples of visuali-
zation performance between the TFT-Net model
and other compared reconstruction methods are
shown in Fig. 13. It can be seen that due to missing
information, the DAS-based images acquired with
limited-view 180� has incomplete ¯nger structure.
Although CycleGAN is inferior to U-Net in evalu-
ation metrics, it demonstrates the image generation
capability of GANs and can e®ectively recover
missing structural information in visualization
results. However, the background noise in the
reconstructed image is still obvious, and the ability
to remove artifacts and noise shows general perfor-
mance. Compared with unsupervised CycleGAN,
WGAN-GP can complete the reconstruction of
missing information and e®ectively remove back-
ground noise, resulting in clearer reconstructed
images. From Fig. 13, it can be seen that the recon-
struction e®ect of TFT-Net without path 1 or path 2
is signi¯cantly better than that without path 3,
indicating that the input of low-quality reconstructed
images is the key to e®ectively guide the network to
complete high-quality image reconstruction. On this
basis, combined with the features of the original

photoacoustic signal and its ¯rst-order derivative to
time, the maximum extraction of reconstructed de-
tail information can be achieved. The reconstructed
image obtained by TFT-Net has better visibility,
which not only accurately restores the missing
structure, but also e®ectively minimized prominent
artifacts, showing well e®ect in practice.

4. Discussion

Noniterative schemes based on deep learning can
provide image reconstruction with low latency, high
quality, and real-time performance, demonstrating
wide potential application prospects e.g., early
tumor screening or surgical guidance.13 In this
study, TFT-Net was used to remove artifacts and
distortions caused by sparse sampling with limited-
view. Model training was conducted on simulated
datasets with di®erent microstructures, and the
results showed that TFT-Net can e®ectively restore
high-quality, high-¯delity images and adapt well to
various imaging targets. Moreover, the model inte-
grates abundant prior information and adopts par-
allel processing, which is conducive to faster rate of
convergence and more stable reconstruction per-
formance. Due to the lack of widespread clinical
application of PAI, real experimental photoacoustic
data is insu±cient.47 Therefore, we validated the
feasibility of transfer training the model to small-
sample PAT based on reported human brain MRI.
Through comparative experiments, TFT-Net
achieves rapid feature extraction and can e®ectively
improve the quality of reconstructed images. Based
on in-vivomouse brain data and ¯nger experimental
data, the e®ectiveness of the model was further
veri¯ed. TFT-Net still shows good reconstruction
performance in the sparse sampling with 8, 16, and
32 detection elements, and can recover sparsely
sampled photoacoustic images under limited-view,
indicating its great potentialities for transplanta-
tion or expansion to other scenarios.

This study still has some limitations and poten-
tial deviations. The model was only validated on
sparse sampling with full-ring or 180� limited-view
coverage, without verifying more severe imaging
conditions. At the same time, the method of multi
prior fusion can e®ectively improve reconstruction
performance, while also accompanied by relatively
inconvenient data preprocessing processes. Based
on the experimental results, we can see that the
GANs perform outstandingly in the recovery of
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missing information, while the CNNs have a more
obvious e®ect on denoising and artifact removal.
Therefore, combining the advantages of both may
further improve the reconstruction quality and
speed in the limited view with sparse sampling. In
the future work, we will seek the representation
relationship between various prior information,
further optimize TFT-Net method, and extend
TFT-Net to 3D for real-time PAI.

5. Conclusions

Based on the ring-array photoacoustic system, in
this paper, a new DL imaging algorithm TFT-Net is
proposed to improve the imaging quality while
considering the imaging speed in the limited-view
and sparse-sample signal acquisition situation. The
proposed TFT-Net implements parallel processing
of three inputs, integrating the texture structure of
traditional algorithms, the high-dimensional fea-
tures of the raw photoacoustic signal and the prior
knowledge of the basic physical model. We train the
model using photoacoustic simulated data generat-
ed by the k-wave simulation toolbox and evaluated
it on the test set. Compared with other DL-based
models and conventional reconstruction methods,
TFT-Net shows better convergence stability and op-
timal performance, signi¯cantly enhancing the de¯-
nition and contrast of images under sparse sampling.
In addition, we verify the performance of TFT-Net on
in-vivo data. TFT-Net still shows excellent image
reconstruction performance in the ¯nger imaging of
the PAT system, achieving PSNR of 31.70dB and
SSIM of 0.84, respectively. Compared with the widely
used methods, it exhibits superior performance and
can obtain high-quality reconstruction results under
sparse sampling with limited-view.
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